Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
Добавить фильтры

Годовой диапазон
1.
Lancet Infect Dis ; 2023 Jun 05.
Статья в английский | MEDLINE | ID: covidwho-20231144

Реферат

The COVID-19 pandemic heralded unprecedented resource mobilisation and global scientific collaboration to rapidly develop effective vaccines. Regrettably, vaccine distribution has been inequitable, particularly in Africa where manufacturing capacity remains nominal. To address this, several initiatives are underway to develop and manufacture COVID-19 vaccines in Africa. Nevertheless, diminishing demand for COVID-19 vaccines, the cost competitiveness of producing goods locally, intellectual property rights issues, and complex regulatory environments among other challenges can undermine these ventures. We outline how extending COVID-19 vaccine manufacturing in Africa to include diverse products, multiple vaccine platforms, and advanced delivery systems will ensure sustainability. Possible models, including leveraging public-academic-private partnerships to enhance success of vaccine manufacturing capacity in Africa are also discussed. Intensifying research in vaccine discovery on the continent could yield vaccines that further bolster sustainability of local production, ensuring greater pandemic preparedness in resource-constrained environments, and long-term health systems security.

2.
Pharmaceutics ; 15(4)2023 Apr 07.
Статья в английский | MEDLINE | ID: covidwho-2297390

Реферат

Africa bears the highest burden of infectious diseases, yet the continent is heavily reliant on First World countries for the development and supply of life-saving vaccines. The COVID-19 pandemic was a stark reminder of Africa's vaccine dependence and since then great interest has been generated in establishing mRNA vaccine manufacturing capabilities on the African continent. Herein, we explore alphavirus-based self-amplifying RNAs (saRNAs) delivered by lipid nanoparticles (LNPs) as an alternative to the conventional mRNA vaccine platform. The approach is intended to produce dose-sparing vaccines which could assist resource-constrained countries to achieve vaccine independence. Protocols to synthesize high-quality saRNAs were optimized and in vitro expression of reporter proteins encoded by saRNAs was achieved at low doses and observed for an extended period. Permanently cationic or ionizable LNPs (cLNPs and iLNPs, respectively) were successfully produced, incorporating saRNAs either exteriorly (saRNA-Ext-LNPs) or interiorly (saRNA-Int-LNPs). DOTAP and DOTMA saRNA-Ext-cLNPs performed best and were generally below 200 nm with good PDIs (<0.3). DOTAP and DDA saRNA-Int-cLNPs performed optimally, allowing for saRNA amplification. These were slightly larger, with higher PDIs as a result of the method used, which will require further optimization. In both cases, the N:P ratio and lipid molar ratio had a distinct effect on saRNA expression kinetics, and RNA was encapsulated at high percentages of >90%. These LNPs allow the delivery of saRNA with no significant toxicity. The optimization of saRNA production and identification of potential LNP candidates will facilitate saRNA vaccine and therapeutic development. The dose-sparing properties, versatility, and manufacturing simplicity of the saRNA platform will facilitate a rapid response to future pandemics.

3.
Front Immunol ; 13: 1018961, 2022.
Статья в английский | MEDLINE | ID: covidwho-2109768

Реферат

Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.


Тема - темы
COVID-19 , Vaccines , Humans , RNA, Messenger/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Technology
4.
Genes (Basel) ; 13(11)2022 10 25.
Статья в английский | MEDLINE | ID: covidwho-2090054

Реферат

Adenoviral vaccines have been at the front line in the fight against pandemics caused by viral infections such as Ebola and the coronavirus disease 2019. This has revived an interest in developing these vectors as vaccines and therapies against other viruses of health importance such as hepatitis B virus (HBV). Current hepatitis B therapies are not curative; hence, chronic hepatitis B remains the major risk factor for development of liver disease and death in HBV-infected individuals. The ability to induce a robust immune response and high liver transduction efficiency makes adenoviral vectors attractive tools for anti-HBV vaccine and therapy development, respectively. This review describes recent developments in designing adenoviral-vector-based therapeutics and vaccines against HBV infection.


Тема - темы
COVID-19 , Hepatitis B, Chronic , Hepatitis B , Viral Vaccines , Humans , Genetic Vectors/genetics , Hepatitis B virus/genetics , Hepatitis B/genetics , Hepatitis B/prevention & control
5.
Gene Therapy ; 28(3-4):117-129, 2021.
Статья в английский | ProQuest Central | ID: covidwho-1210051

Реферат

Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1. Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA, suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their potential for preventing and treating chronic infections.

6.
Gene Ther ; 28(3-4): 117-129, 2021 Apr.
Статья в английский | MEDLINE | ID: covidwho-889182

Реферат

Vaccinology is shifting toward synthetic RNA platforms which allow for rapid, scalable, and cell-free manufacturing of prophylactic and therapeutic vaccines. The simple development pipeline is based on in vitro transcription of antigen-encoding sequences or immunotherapies as synthetic RNA transcripts, which are then formulated for delivery. This approach may enable a quicker response to emerging disease outbreaks, as is evident from the swift pursuit of RNA vaccine candidates for the global SARS-CoV-2 pandemic. Both conventional and self-amplifying RNAs have shown protective immunization in preclinical studies against multiple infectious diseases including influenza, RSV, Rabies, Ebola, and HIV-1. Self-amplifying RNAs have shown enhanced antigen expression at lower doses compared to conventional mRNA, suggesting this technology may improve immunization. This review will explore how self-amplifying RNAs are emerging as important vaccine candidates for infectious diseases, the advantages of synthetic manufacturing approaches, and their potential for preventing and treating chronic infections.


Тема - темы
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , RNA, Viral/immunology , SARS-CoV-2/immunology , Vaccination , COVID-19/epidemiology , COVID-19/genetics , COVID-19 Vaccines/genetics , COVID-19 Vaccines/therapeutic use , Humans , RNA, Viral/genetics , RNA, Viral/therapeutic use , SARS-CoV-2/genetics
Критерии поиска